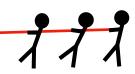


£ £

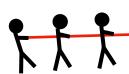

PUSH IT, PULL IT



THE STEPHEN Hawking FOUNDATION

DART ACTIVITY

Verse 1:		
Jonny:	If you're an engineer, designing cars or planes,	
·	How do you know that when they're used, they're gonna be safe?	
Engineer:	You can make a prediction that's so precise, it's insane,	
2	With equations, calculations and imagination.	
Verse 2:	with equations, calculations and imagination.	
Jonny:	What will you need to know?	
Engineer:	Speed, distance, 1 and time,	
-	What are they?	
Jonny:		
Engineer:	2 quantities, that only have size,	Complete the following tasks
	But some quantities are vectors with direction besides.	
	That's how velocity, acceleration, and 3 are defined,	
Jonny:	What's a force?	1. Fill in the blank keywords - if you
Engineer:	Push or pull.	are not sure, there are clues on
Jonny:	Like 4 and weight?	-
Engineer:	They are the ones that still can pull, when the objects separate,	the next page.
-	But compression and 5, and air resistance relate,	
	They're contact forces,	2. Circle sections in red that are
Jonny:	Like a 6 force.	
Engineer:	Oh yeah.	definitions of keywords.
Both:	And friction	
Engineer:	Add them together to treat them like there's one,	3. Circle sections in green that
	I use 7 forces to predict the outcome.	describe equations.
Chorus	Farmer	
All:	Forces	
Engineer:	Change your shape, your 8 or your direction,	4. Circle sections in blue that
Engineer:	When forces balance you won't change momentum,	describe real world examples.
Engineer:	Force is mass times 9,	describe real world examples.
Jonny:	I will pull or push you back in every situation.	
Verse 3:		
Jonny:	Tell me what you know about 10,	
Engineer:	Bigger, closer, things pull more attractively,	
	To find the 11, multiply the mass by g,	
	The field strength on Earth, it's roughly 10 12 per kilo	
Jonny:	If I'm stretching a spring?	
Engineer:	Use 13 to see,	
0	That the tension and extension grow proportionally,	
Jonny:	What's a 14?	
Engineer:	A turning force, like spanners need,	
Engineer.	Force times distance from the pivot perpendicularly,	
lonny	Ok. But how do forces link to something's energy?	
Jonny:		hanically
Engineer:	Force times the distance moved is 15 that's done med	nanically,
	It's the energy shifted between stores. An example could be,	
	Shifting by lifting, to be stored in things 16,	
Jonny:	So, what's momentum?	
Engineer:	Mass times 17,	
	And if it's low, then something's motion changes easily with	
Chorus		
Verse 4:		
Jonny:	Is it safe to drive fast?	
Engineer:	How fast?	
-		
Jonny:	How fast can I go?	
Engineer:	That depends if you've enough 18 to slow,	
Jonny:	Why?	
Engineer:	You need time to react, which may take longer you know,	
	If you are 19 or if you're drinking alcohol.	
Jonny:	I can stop really fast,	
Engineer:	But then the forces felt,	
	Can cause internal damage.	
Jonny:	Even with a safety belt?	
Engineer:	And since brakes will dissipate energy, that's half m v 20.	
	It takes much longer to stop, when driving fast, beware.	
Chorus		



Each of these words is used once.						
speed	squared	velocity	scalar	newtons	tired	
tension	Hooke's la	w gravi	tationally	force	gravity	
acceleration stopping distance normal work						
mass	resultant	weight	magn	etism r	noment	

Definitions

- 1. A quantity measured in kilograms.
- 2. A quantity that has size but no direction.
- 3. A push or a pull.
- 4. A non-contact force between north and south poles.
- 5. A stretching force.
- 6. Describes a reaction force such as the ground pushing up on your feet.
- 7. Describes the outcome of adding things together.
- 8. The rate at which the distance from something changes.
- 9. The rate at which speed changes.
- 10. The tendency of objects to pull on each other because of their mass.
- 11. The force as a result of a gravitational pull.
- 12. The unit of force.
- 13. Force = spring constant x extension
- 14. A turning force, found by multiplying the force by the perpendicular distant from the pivot.
- 15. Energy transferred through pushing or pulling.
- 16. A way to store energy that is dependent on the distance that an object can fall.
- 17. A quantity that describes an objects speed and direction.
- 18. The sum of the distances travelled whilst reacting and braking, when bringing a vehicle to rest.
- 19. A physical state caused by lack of sleep or over-exertion
- 20. The mathematical operation whereby a number is multiplied by itself.

